
Efficient Algorithm for Fault Tolerance in Cloud
Computing

1Jasbir Kaur, 2Supriya Kinger

Department of Computer Science and Engineering,
SGGSWU, Fatehgarh Sahib, India,

Punjab (140406)

Abstract-Fault tolerance in cloud computing platforms and
applications is a crucial issue. This issue is especially difficult
since cloud computing relies by nature on a complex splitting
into many layers. This paper analyses the implementation of
fault tolerance in such a complex cloud computing
environment with a focus on FCFS and SJF along with MPIL
method with fault tolerance property. The proposed algorithm
works for reactive fault tolerance among the servers and
reallocating the faulty servers task to the new server which
has minimum load at the instant of the fault. We illustrate this
discussion with experiments where exclusive and collaborative
fault tolerance solutions are implemented in an autonomic
cloud infrastructure that we prototyped. It also includes
algorithm comparison between MPI and MPIL.

Keywords-Fault tolerance, FCFS, SJF, MPI, MPIL

1. INTRODUCTION

 Cloud computing is an emerging model for business
computing. The basic principles of cloud computing are
that data entered by the user is not stored locally, but is
stored in data center of internet. The need of services to the
lowest level is in demand. Nowadays everybody is not
ready to purchase the devices that provide the services. The
users rather purchase the services provided by the devices
at the big servers. The infrastructure of pay-per-use is
highly in demand. The users from different locations just
like to have the services and pay for the time being they are
availing the services. Cloud computing enables convenient
and on-demand network access to shared pool of
computing resources that needs to be managed. The
companies that can provide cloud computing services
manage and maintain the normal operation of these data
centers, ensure strong computing power and large storage
space for users, then users only at any time, and any place
use any terminal equipment that is connected to the internet
to access these services without having to think of the
position of cloud that are stored. It is a large scale
computing using virtual resources. Its popularity is
increasing as a cost effective alternative and also High
Performance Computing for supercomputers. There have
been different clouds releases until now Eucalyptus,
Hadoop, CloudSim and Nimbus etc [1].
Resource scheduling is the basic and key process for clouds
in Infrastructure as a Service (IaaS) as the need of the
request processing is must in the cloud. Every server has
limited resources so jobs/requests needs to be scheduled.
Each application in the cloud computing is designed as a
business processes including a set of abstract processes. To
allocate the resources to the tasks there is need to schedule

the resources as well as tasks coming to the resources, there
needs to be a Service Level Agreements (SLAs) for Quality
of Service (QoS). Till now no algorithm has been
introduced which considers both reliability and availability
together? According to the paradigm of cloud there has
been a lot of task scheduling algorithms, some are being
fetched on the basics of scheduling done on the operating
system. The basics of operating system job scheduling is
taken and applied to the resources being installed in the
cloud environment [2].
There is enormous need for the cloud services to schedule
the resources as this scheduling will further be followed by
the job/task scheduling inside of the resources. There may
be many instances of the single resource that they can be
run at the same time. There is need of checking of
availability and reliability and also the load must be
balanced among the resources of the same type. For the
above parameters there need for a procedure or function
that could check them and allocation should be done in the
best and optimal way.

2. RELATED WORK
There has been lot of work done in the field of fault
tolerance but we will only take the techniques that have
come into action a few years back i.e. recent ones
Various fault tolerance techniques are currently prevalent
in clouds [3-7]:-
Check pointing – It is an efficient task level fault tolerance
technique for long running and big applications. In this
scenario after doing every change in system a check
pointing is done. When a task fails, rather than from the
beginning it is allowed to be restarted that job from the
recently checked pointed state.
Job Migration – Sometimes it happens that due to some
reason a job cannot be completely executed on a particular
machine. At the time of failure of any task, task can be
migrated to another machine. Using HA-Proxy job
migration can be implemented.
Replication - Replication means copy. Various tasks are
replicated and they are run on different resources, for the
successful execution and for getting the desired result.
Using tools like HA-Proxy, Hadoop and AmazonEc2
replication can be implemented.
Self- Healing - A big task can divided into parts. These
multiplications done for better performance. When various
instances of an application are running on various virtual
instances.

Jasbir Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6278-6281

www.ijcsit.com 6278

Safety-bag checks - In this case the blocking of commands
is done which are not meeting the safety properties [4].
S-Guard- It is less turbulent to normal stream processing.
S-Guard is based on rollback recovery. S-Guard can be
implemented in HADOOP, Amazon EC2.
Retry- In this case we implement a task again and gain. It
is the simplest technique that retries the failed task on the
same resource.
Task Resubmission- A job may fail now whenever a failed
task is detected, In this case at runtime the task is
resubmitted either to the same or to a different resource for
execution.
Timing check: This is done by watch dog. This is a
supervision technique with time of critical function [4].
Rescue workflow- This technique allows the workflow to
persist until it becomes unimaginable to move forward
without catering the failed task.
Software Rejuvenation-It is a technique that designs the
system for periodic reboots. It restarts the system with
clean state and helps to fresh start.
Preemptive Migration- Preemptive Migration count on a
feedback-loop control mechanism.
The application is constantly monitored and analyzed.
Masking: After employment of error recovery the new
state needs to be identified as a transformed state. Now if
this process applied systematically even in the absence of
effective error provide the user error masking [5].
Reconfiguration: In this procedure we eliminate the faulty
component from the system.
Resource Co-allocation: This is the process of allocating
resources for further execution of task.
User specific (defined) exception handling- In this case
user defines the particular treatment for a task on its failure.
Several models are implemented based on these types of
techniques..
“AFTRC” a fault tolerance model for real time cloud
computing based on the fact that a real time system can
take advantage the computing capacity, and scalable
virtualized environment of cloud computing for better
implement of real time application. In this proposed model
the system tolerates the fault proactively and makes the
diction on the basis of reliability of the processing nodes
[8].
“LLFT” is a propose model which contains a low latency
fault tolerance (LLFT) middleware for providing fault
tolerance for distributed applications deployed with in the
cloud computing environment as a service offered by the
owners of the cloud. This model is based on the fact that
one of the main challenges of cloud computing is to ensure
that the application which are running on the cloud without
a hiatus in the service they provided to the user. This
middleware replicates application by the using of semi-
active replication or semi-passive replication process to
protect the application against various types of faults [9].
“FTWS” is a proposed model which contains a fault
tolerant work flow scheduling algorithm for providing fault
tolerance by using replication and resubmission of tasks
based on the priority of the tasks in a heuristic matric. This
model is based on the fact that work flow is a set of tasks
processed in some order based on data and control

dependency. Scheduling the workflow included with the
task failure consideration in a cloud environment is very
challenging. FTWS replicates and schedule the tasks to
meet the deadline [10].
“FTM” is a proposed model to overcome the limitation of
existing methodologies of the on-demand service. To
achieve the reliability and resilience they propose an
innovative perspective on creating and managing fault
tolerance .By this particular methodology user can specify
and apply the desire level of fault tolerance without
requiring any knowledge about its implementation. FTM
architecture this can primarily be viewed as an assemblage
of several web services components, each with a specific
functionality [11].
”Candy” is a component base availability modeling frame
work, which constructs a comprehensive availability model
semi automatically from system specification describe by
systems modeling language. This model is based on the fact
that high availability assurance of cloud service is one of
the main characteristic of cloud service and also one of the
main critical and challenging issues for cloud service
provider [12].
“Vega-warden” is a uniform user management system
which supplies a global user space for different virtual
infrastructure and application services in cloud computing
environment. This model is constructed for virtual cluster
base cloud computing environment to overcome the 2
problems: usability and security arise from sharing of
infrastructure [13].

3. PROPOSED WORK
After study, we found that the main fault tolerance issues in
cloud computing are detection and recovery. To combat
with these problems, many fault tolerance techniques have
been designed to reduce the faults. But due to virtualization
and internet based service providing behavior fault
tolerance in cloud computing is still a big challenge. Our
proposed model is not only to tolerate faults but also to
reduce the chance of future faults.

Figure.1 Flowchart of work

Start

Job Scheduler

Implement MPI

System Requirements To check compatibility

Tasks increases

Implement MPIL

Stop

Jasbir Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6278-6281

www.ijcsit.com 6279

The flow chart (fig. 1) shows that implementation of new
proposed technique. To obtain the result following steps
has to be achieved:
1. There are N number of tasks and J is the Job

scheduler. The use of the job scheduler is to execute
the jobs.

2. When a scheduler executes the jobs it sends the MPI in
the form of message to check the compatibility of the
system so that , execution of the jobs takes place.
Following are the system requirements that are
checked to check the compatibility of the system.
- CPU Type
- Speed(MHz/GHz)
- Processor Bus (MHz)
- Cache (KB)
- RAM size (MB/GB)
- SCSI Controller
- Disk type
- Disk size (GB)

3. There are number of systems that are not compatible
according to the above requirements, so various jobs
remain unexecuted.
E.g there are 10 tasks that are unexecuted due to the
incompatibility of the system, so system will check
MPI many times to check the reason of un execution ,
so it is very time consuming process to check all the
time.

4. So MPI with look up tables is used in this case, Look
up table is the table that contains the response of the
system each time in accordance with the tasks. This
table is updated number of times s that it can be known
that which are the new target systems for job
execution. The main difference between the MPI and
MPIL is that MPIL is checked only for one time for
unexecution of the job while MPI is checked number
of time to check the execution of tasks. There is one
more term called checkpoints, it is used to reduce the
checking of the execution tasks offenly.

Proposed Algorithm (MPI with Lookup)

1) START
2) INITIALIZE Job_cnt=1;
3) Configure.System.Model=true
4) Look_up_value=0;
5) Count=selected.job.count
6) If count>1
7) Allocate.job.specified.system
8) Allocation.parameter=configured.parameter
9) If allocation.process==ok
10) Process and update .value.system selection
11) If value.exceeds.system.capabilites--broadcast

system.list
12) Update.loopuptable ;
13) if broadcast.count==1
14) Create.newlookuptable=true
15) Else update.lookup=true
16) End.

4. TOOLS and RESULTS
Here Visual Studio (2008) is used as a front end and SQL-
Server (2005) is used as a back end means for the database
purpose.

Tools Used

Platform Windows

Operating System Windows -7

Framework .NET Framework

Front End Tool ASP.net with C#

Editing Tool Microsoft Visual Studio 2008

 Table.1 Tools Used

Figure.2 Energy consumed versus task assigned of

MPI and MPIL

In fig. 2 energy graph of MPI and MPIL is drawn for the
given no. of tasks. This result shows that how much energy
is consumed for the particular number of tasks using MPI
and MPIL both. It shows that MPIL consume less energy as
compare to MPI.

Figure.3 Checkpoints Performance of MPI and MPIL

In fig.3 Checkpoints graph of MPI and MPIL is drawn for
the given no. of tasks. This result shows that how many
numbers of checkpoints are used for the particular number
of tasks using MPI and MPIL. It shows that MPIL uses less
number of checkpoints as compare to MPI.
From above it is concluded that MPIL is far better than the
MPI because it consumes less energy and lesser number of
checkpoints as compare to MPI.

0

200

400

600

800

2 4 6 8 10
E

ne
rg

y

tasks

Energy graph

MPI

MPIL

0

5

10

15

20

25

30

35

2 4 6 8 10

C
h

ec
k

p
oi

n
ts

No. of Tasks

Checkpoints Graph

checkpoints in
MPI

Checkpoints
inMPIL

Jasbir Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6278-6281

www.ijcsit.com 6280

4. CONCLUSION AND FUTURE SCOPE
Fault tolerance refers to correct and continuous operation
even in the presence of faulty components. In most of the
real time cloud applications, processing on computing
nodes is done remotely. So there are more chances of
errors. So there is an increased requirement for fault
tolerance to achieve reliability for the real time computing
on cloud infrastructure. Fault tolerance is carried out by
error processing which have two constituent phases. The
phases are “effective error processing” which aimed at
bringing the effective error back to a dormant state, i.e.
before the occurrence of error and “latent error processing”
aimed at ensuring that the error does not become effective
again. In the end it is concluded that the performance of
MPIL is better than the MPI in terms of both energy
consumption and checkpoints required as seen from the
above results.

REFERENCES
[1] Sun Microsystems, Inc. “Introduction to Cloud Computing

Architecture” White Paper 1st Edition, June 2009
[2] Mladen A. Vouk, “Cloud Computing – Issues, Research and

Implementations”, Department of Computer Science, North Carolina
State University, Raleigh, North Carolina, USA,Journal of
Computing and Information Technology - CIT 16, 2008, 4, 235–
246doi:10.2498 /cit.1001391

[3] AnjuBala, InderveerChana,” Fault Tolerance- Challenges,
Techniques and Implementation in Cloud Science Issues, Vol. 9,
Issue 1, No 1, January 2012 ISSN (Online): 1694-0814
www.IJCSI.org

[4] Benjamin Lussier, Alexandre Lampe, Raja Chatila,
JérémieGuiochet, Félix Ingrand, Marc-Olivier Killijian, David
Powell, “Fault Tolerance in Autonomous Systems: How and How
Much?” LAAS-CNRS 7 Avenue du Colonel Roche, F-31077
Toulouse Cedex 04, France {firstname.lastname}@laas.fr

[5] Jean-clandeLaprie “Dependable computing and fault tolerance:
concepts and terminology” LAAS-CNRS 7 Avenue du Colonel
Roche, 31400 Toulouse, France

[6] GolamMoktaderNayeem , Mohammad Jahangir Alam,” Analysis of
Different Software Fault Tolerance Techniques”, 2006.

[7] GeoffroyVallee, KulathepCharoenpornwattana, Christian
Engelmann, AnandTikotekar, Stephen L. Scott,” A Framework for
Proactive Fault Tolerance”.

[8] Sheheryar MalikandFabriceHuet “Adaptive Fault Tolerance in Real
Time Cloud Computing” 2011 IEEE World Congress on Service

[9] Wenbing Zhao, P.M. Melliar and L.E. Mose” Fault Tolerance
Middleware for Cloud Computing” 2010 IEEE 3rd International
Conference on Cloud Computing.

[10] Jayadivya S K, JayaNirmala S, Mary SairaBhanus”Fault Tolerance
Workflow Scheduling Based on Replication and Resubmission of
Tasks in Cloud Computing” International Journal on Computer
Science and Engineering (IJCSE)

[11] Ravi Jhawar, Vincenzo Piuri and Marco Santambrogio“A
Comprehensive Conceptual System level Approach to Fault
Tolerance in Cloud Computing” IEEE

[12] Fumio Machida, Ermeson Andrade, Dong SeongKim and Kishor S.
Trivedi“Candy: Component-based Availability Modeling
Framework for Cloud Service Management Using Sys-ML” 2011
30th IEEE International Symposium on Reliable Distributed
Systems.

[13] Jianlin, Xiaoyi Lu, Lin Yu, YongqiangZou and Li Zha“Vega
Warden: A Uniform User Management System for Cloud
Applications “2010 Fifth IEEE International Conference on
Networking, Architecture, and Storage.

Jasbir Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6278-6281

www.ijcsit.com 6281

